

Large-scale distributed computing systems Lecture 7:

Data Management

February 2014

Johan Montagnat CNRS, I3S, MODALIS http://www.i3s.unice.fr/~johan/

Course overview

- 1. Distributed computing and models
- 2. Remote services
- 3. Infrastructures and deployment
- 4. Workload and performance modeling
- 5. Workflows
- 6. Authentication, authorization, security
- 7. Data management
- 8. Evaluation

Course content

- 6. Data Management
 - Distributed data management
 - Distribution, replication
 - P2P

Distributed data

Scientific data records increase permanently

- Astronomy / astrophysics observations
- Satellite data, climate, atmosphere, geophysics data
- Epidemiology data, medical records
- Biological data, gene annotations and structure, genomes
- Scientific instruments, e.g. high energy physics records
- Target PB repositories
- Usually distributed
- Potentially sensitive
- File systems limitations
 - 2³¹ bytes per file / inodes (towards 64 bytes file systems)
 - ~10000 files/directory

4

Requirements

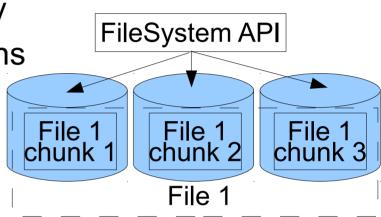
- Very large scale distribution, transparent access
 - Heterogeneous formats
 - Virtualization of distributed resources
 - Coherency of remote data updates and replicated data
- Performance, scalability
 - Data transfers and data access strategies: often depend on access patterns
 - Parallel access, multiple users
- Fault tolerance
 - Resources failures and network service interruption
- Reliability
 - Long term availability of data, non repudiation
- Access control, data protection
 - Flexible access control, on-storage and on-network protection

Distributed data management

- Centralized approach: file catalogs, indexes
 - Handles heterogeneity, legacy storage
 - Direct access to data, bottlenecks (limited scalability), central point(s) of failure
 - Depend on external storage data management policies
 - Ease coherency and data protection
- Decentralized approach: peer-to-peer
 - Very scalable, no critical point, distribute dat search load
 - Strategies performance dependent on data access patterns
 - Robust, unreliable environment with many peer failures
 - Low data protection
- Hybrid centralized / decentralized
 - Replicated catalogs or P2P networks with redundancy, QoS...

Distributed file systems

Master Ubinet: Large-Scale Distributed Computing (7)


7

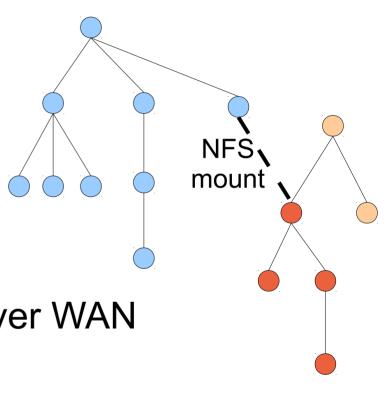
Distributed file systems

- First idea: extend existing approach (local file system) to distributed resources
- Parallel I/O
 - Performance
- Network File System
 - Network extension of file systems
- Andrew File System
 - Secured, large-scale extension with collaborative caching
- Grid File System
 - Emphasis on heterogeneity management
 - Ambitious objectives for information life-cycle management

Parallel file systems

- Focus on high performance
 - Local resources with high connectivity
 - Independent industrial implementations (IBM, SGI...)
- Performance
 - Parallel I/O
 - Can be exploited by parallel programs...
 - ...or sequential programs in case of disk bus saturation
 - Dedicated architectures available
- Storage Area Network (SAN)
 - Network interfaced storage resources
 - High performance network as disk bus (fiber channel)

Master Ubinet: Large-Scale Distributed Computing (7)

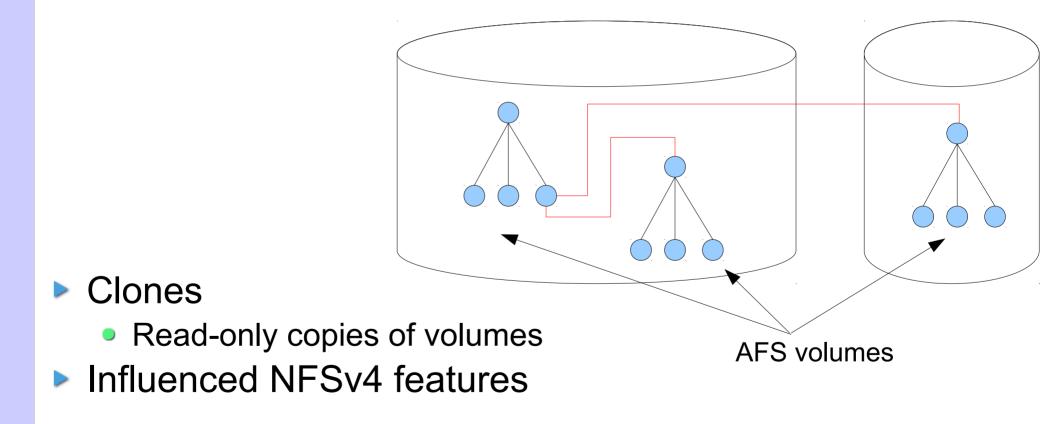

NFS: Network File System

Multiple (partial) file systems viewed as one

C/S model

- Scalability limitation
- Usually across LAN
- Security limitations
 - User IDs mapping?
 - Special control for UID 0 (root)
 - Transfers over WAN?
- Obvious performance limitations over WAN
 - Caches
 - Automount

...



AFS: Andrew File System

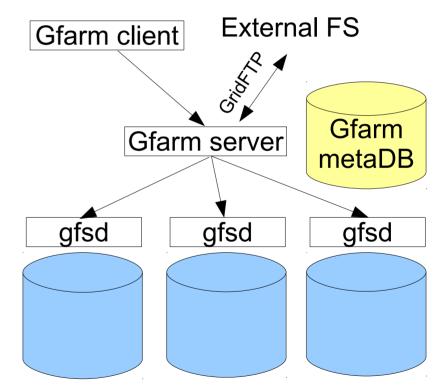
- File system on the NFS model with focus on
 - Security (Kerberos authentication, ACL control)
 - Distribution (caches)
 - Scalability (tens of thousand client per cells)
- Collaborative caching
 - File locking strategy for ensuring coherency during updates (avoid too large, shared records)
 - Modification on local caches
 - Cached files listed on AFS server
 - Notification mechanisms in case of file modification to all caches (with recovery on network failure)

AFS: Andrew File System

- Space partitioning by AFS volumes
 - Files hierarchy hosted on a single storage device
 - Logical view (mountpoints, migration of volumes possible)

GFS: Grid File System

- Open Grid Forum working group standard
- Targets
 - Standard interface for multiple resources
 - Plug-n-play resources
 - Federation of logical resource name space
 - Information lifecycle management (data placement and retention policies)
 - Object based storage
 - Context management
 - Bulk and asynchronous operations
- Storage resources virtualization
 - Abstraction layer to manage heterogeneity

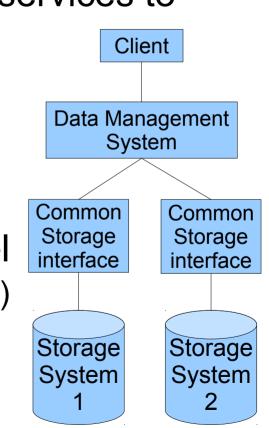

GFS implementation: Gfarm

Architecture

- Local resource virtualization through gfarm daemon
- Specific C/S protocol + external protocols supported (e.g. GridFTP)
- System metadata store
- Reliability
 - Replication
- Performance
 - Parallel IO

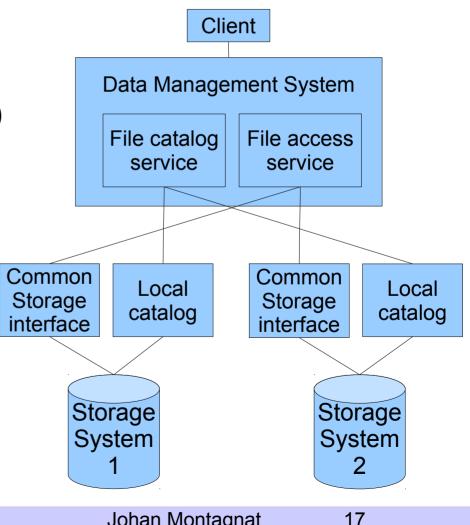
Interoperability

- Grid credentials recognized
- FUSE component to mount on UNIX file systems


File catalogs and replication

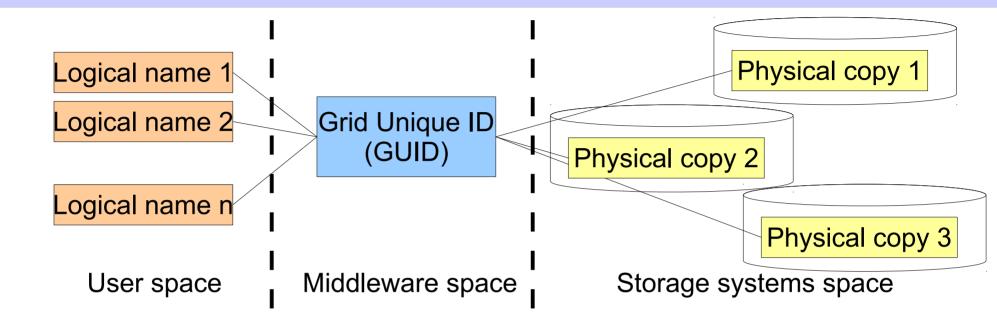
Master Ubinet: Large-Scale Distributed Computing (7)

15


Splitting storage and data management

- Handle heterogeneity
 - Standard interface to storage resources
 - Storage service
- Manage data at a higher level: Additional services to handle:
 - Distribution, load management
 - Availability, replication
 - Performance, caching, transfers scheduling
- Require adequate support at storage-level
 - Security (data access control, data protection)
 - Data locks...

File catalog


- Unique view of file hierarchy
 - (Local) sub-catalogs mapping to a single file tree view
 - Centralized entry point
- Additional services
 - Access control
 - System metadata (checksum...)
 - User-defined metadata

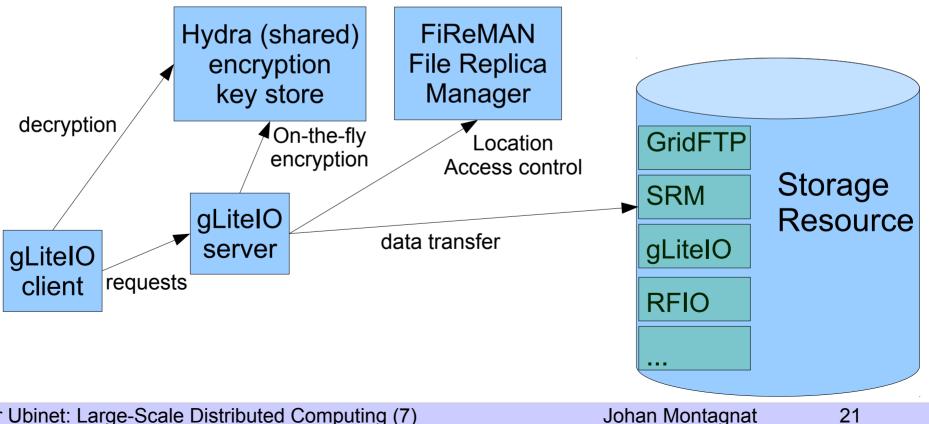
File replication

- Files replication over different sites enable
 - Improved performance (use closest replica)
 - Improved reliability (if a server is out of reach, replica may still be available)
 - Easy to set up (in read-only mode at least)
- Drawbacks
 - Multiple copies coherency problem
 - Define replication policies: by hand or automatic (mirror, partial mirror)
 - Does not solve the storage size granularity problem
- Distribution
 - Synchronize access controls on different storage
 - Give a logical view of several physical replica

File Replication

- GUID: Grid-wide Unique IDentifier (system use)
- Logical names: user names, many-to-1 association
- Physical names: URI kind (location), 1-to-many association
- File catalogs map logical, system and physical spaces

SRM: Storage Resource Manager


SRM is an OGF standard

- Early version 1 wide spread, but basic functionality lacking (access control...)
- Version 2 well supported with corrections
- Current version 3 hardly supported (complexity)
- Common interface to all storage resources
 - File access and transfer
 - Directories and space management
 - Files life time management
 - Targets large and hybrid (tape/disk) storage: space reservation, file prefetching and pinning
- Only individual storage resources management
 - Limited to local resource management
 - No high level data management policy

gLite Data Management System

Collaboration of services

- File catalog: data location and replication
- Encryption key store: on the fly data encryption
- gLiteIO server: IO interface and access control

Master Ubinet: Large-Scale Distributed Computing (7)

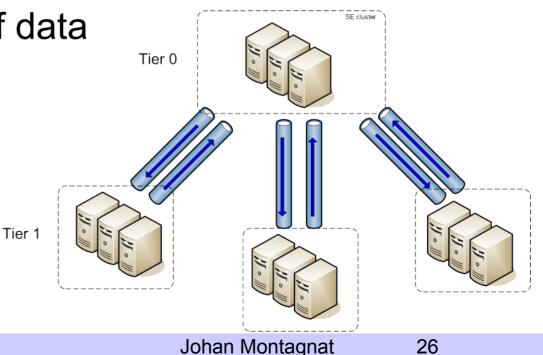
The FiReMan file catalog

- FiReMan: File Replica Manager
- Resolves logical file names to GUIDS to physical location (URL) of files
- Secured access: VOMS groups, ACL support
- File attributes support (metadata indexed on files GUIDs)
- CLI and simple APIs
- Web-based interface
- Exposing interfaces suitable for matchmaking (synchronized with workload management system)

• 🗅 • 🛃 🔞 🔗	https://lxb1434.cern.ch	n:8443/EGEE/glite-data-catalog-serv	/ice-fr-mysql/js-catalog-ls.html 🛛 💋 🔽	🔘 Go 💽
etting Started 🔯 Latest Headlines				
List Catalog	Get Replicas	Create a New Entry	Manage Directories	Documentation
Current Directory: ~/E GEEptutorial/data file.26 file.27 file.28 file.30 file.30 file.31 file.32 file.33 file.33 file.35 file.36 file.36 file.38 file.40 file.42 file.42 file.43 k.42 file.43 k.43		ModiflyTime: 11 332 ValidityTime: 0 CreationTime: 11 33 Data: Size: 3 Metainfo: LFN: /EGEE/tutorial. GUID: 004346da-87 ModiflyTime: 11 332 ValidityTime: 0 CreationTime: 11 33 Data: Size: 3 Surl :	23-138c-b985-898a04b6beef 73387000 1273387000 1273387000 1273387000 128-138c-8a43-898a04b6beef 73387000 1273387000	stor/cern.ch/user/g/gproc
Service Version: 1.4.2		setMasterReplica g setModifyTime getM surlStats :	edmasterReplica creationTime mo etMasterReplica setCreationTime ; lodifyTime setSuri getSuri newinsta ch:8443/srm/managerV1?SFN=/ca ned	getCreationTime ince serialize deserialize

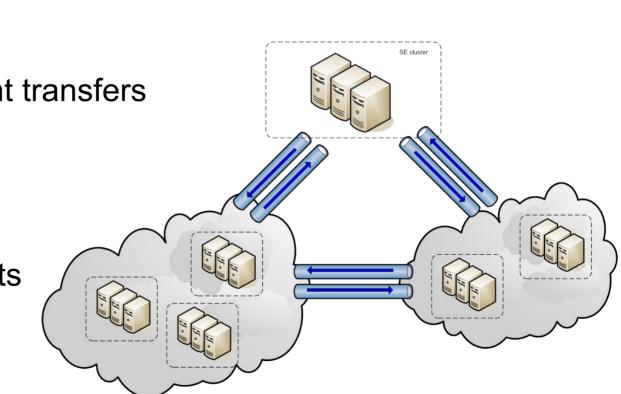
Hydra distributed key store

- Unique key generated for each file
 - GUID file key association
- AES encryption algorithm
- Key splitting for improved security
 - Shamir shared secret algorithm
- Access control on keys based on ACLs
- Different access levels
 - Full access to file and encryption key for authorized users
 - Access to (encrypted) file but not keys for file administrators

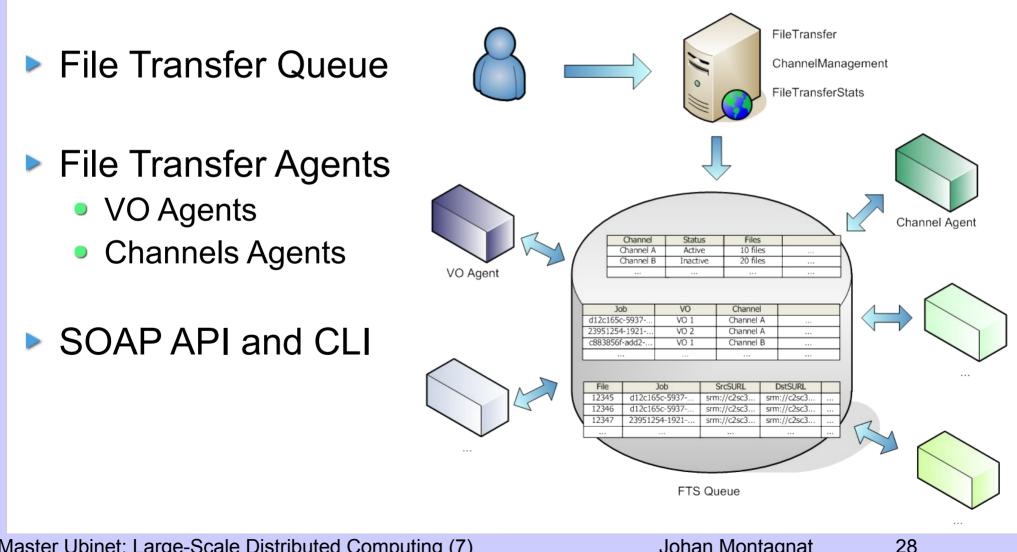

File transfer

GridFTP

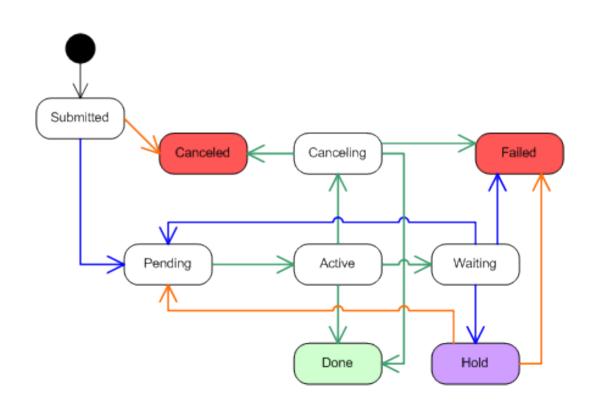
- Security
 - Grid credentials-based authentication and authorization (single sign-on)
- Third-party transfer
 - Server-to-server file transfers for administration needs
- Performance
 - Multiple parallel TCP streams
- Striped
 - Data interleave
- Partial transfer
- Restart on failure
- QoS negotiation (buffer, window size)


File Transfer Service

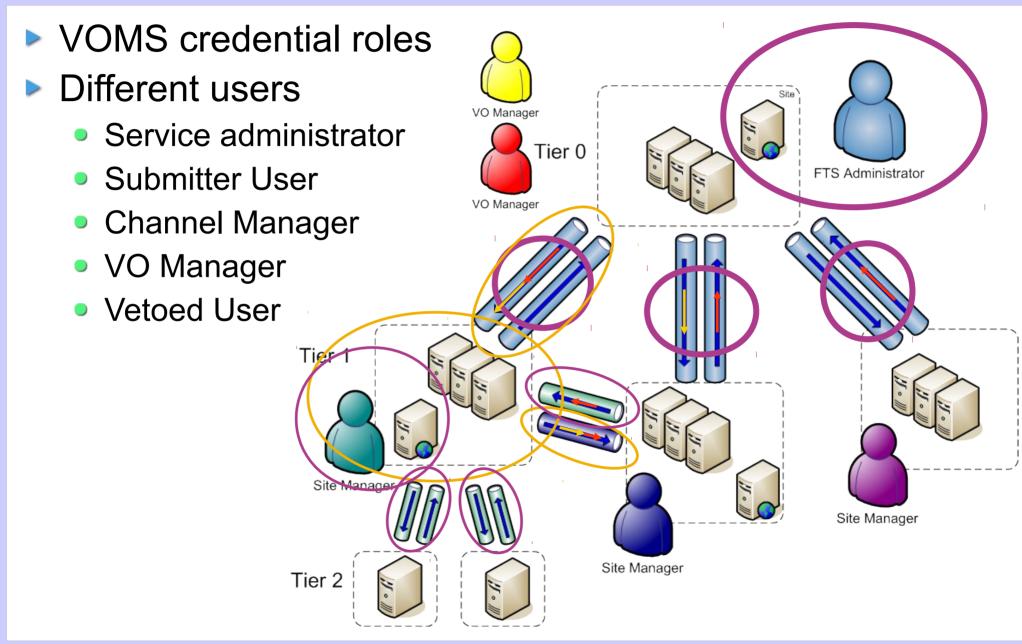
- Sequential file transfer (e.g. FTP)
 - Unfair for smaller files
- File Transfer Service
 - Supports grid credential (single sign-on) and SRM protocol
 - Scheduled transfers
 - Error recovery
 - Simplified management of data sets
- For very large amounts of data


Key Concept: transfer channel

- Logical unit of management
 - Represent a directed network pipe between two sites
- Mono-directional
- Independently manageable
 - State
 - Number of streams
 - Number of concurrent transfers
- Inter-VO scheduling
 - VO share
- Site Grouping
 - Define multiple targets


FTS Architecture

- FTS Web Service
 - User, Administration and Monitoring Interfaces



Transfer jobs

- Channel has a number of properties
 - State (Active / Inactive / Drain / Stopped / Halted)
 - Number of concurrent files transfers
- Scheduler
 - Queue of request
 - State machine

Security: Roles

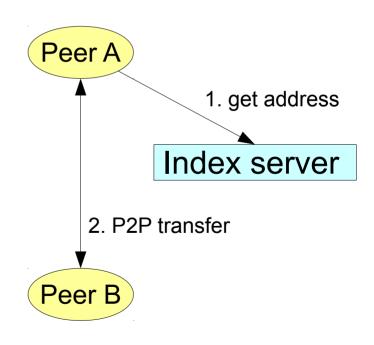
Master Ubinet: Large-Scale Distributed Computing (7)

P2P networks

Master Ubinet: Large-Scale Distributed Computing (7)

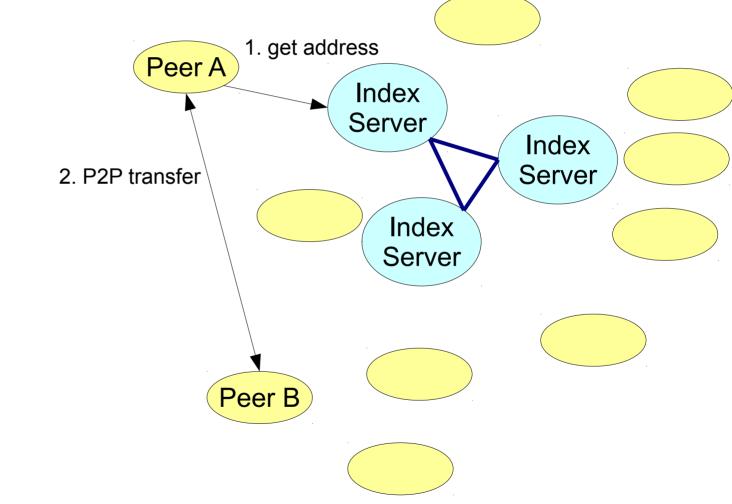
P2P: Peer-to-Peer

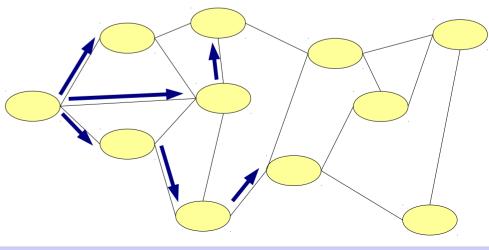
- Away from the Client-Server model
 - All peers contribute, no centralized / critical server


Decentralization

- Avoid single point of failure
- Aggregate multiple resources
- Opposite (Dynamically) extend network of participants
- Expected properties (not all compatible!)
 - Minimum data search time
 - Minimum network overhead
 - Scalability
 - Fault tolerance
 - Reliability, completeness

Napster: centralized index


- Centralized index
 - Central point of failure
 - Index size limitation
 - Very efficient lookup
- Peer-to-Peer data tansfers
 - Shared data delivery (no high load on servers)
 - Shared bandwidth (no bottleneck)


Towards centralized/decentralized

- Extend scalability
 - Replicate indexes

Gnutella: decentralized, flooding

- Each peers is connected to a couple of neighbors
 - Typically 3-4 neighbors
 - Need a bootstrap mechanism (IRC, Gnucache, ping...)
- Searches by flooding the peers network
 - Message flooding in the peer network
 - Unique IDs to detect loops
 - Maximum Time-To-Live (TTL) to limit expansion (typically 7)
 - In the order of 10 000 peers
- File transfers
 - Direct P2P
 - HTTP protocol, GET requests

Gnutella early protocol

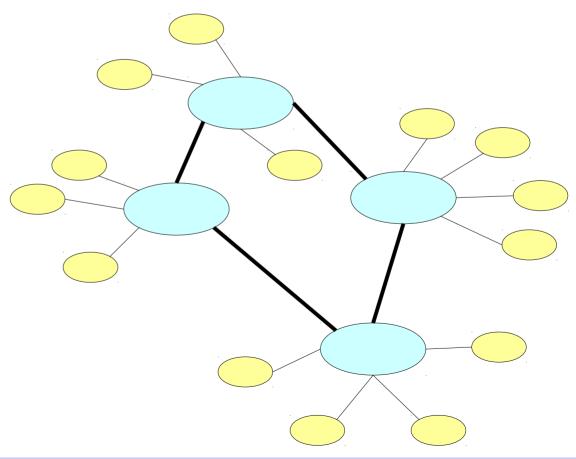
Messages

- No sender IP: response track back the route of requests
- Ping: discover new peers
- Pong: reply to ping (include responder IP/port)
- Query: search for data
- QueryHit: return found data (include responder IP/port)
- Push: bypass firewalls by requesting outbound connection (include sender IP)

Decentralization

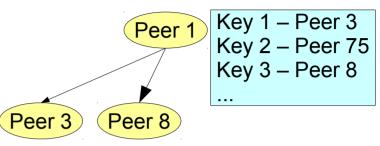
- Limited horizon (7 hops, ~10 000 peers), no guaranteed data retrieval
- No routing, large communication overhead for flooding

Gnutella weaknesses


- Ad-hoc topology of the overlay network
 - No differences between physical network leafs
 - Critical bridges appear
- Network heterogeneity
 - Limited connection peers create bottlenecks
 - 56 kbits connection limitation: 560 bytes query x 10 queries / seconds x 3 peers makes more than 25% of the traffic

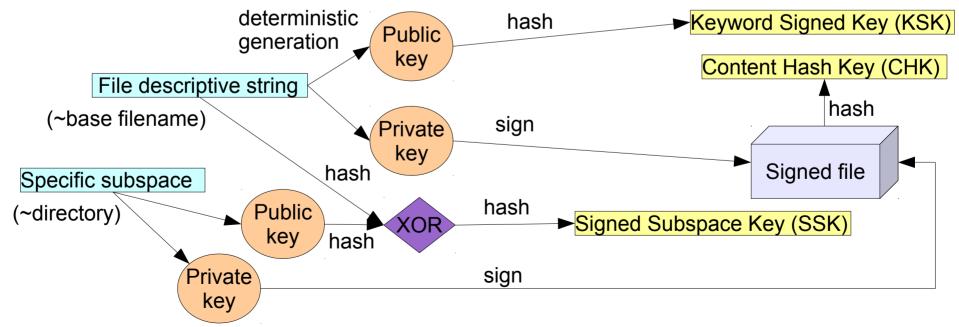
Query length

- Multiply connection latencies, affected by TCP/IP timeouts
- No load balancing
 - In practice, it is found that two third of users do not serve files
 - 1% of host serve 37% of files (20% serve 98%)


Towards centralized/decentralized

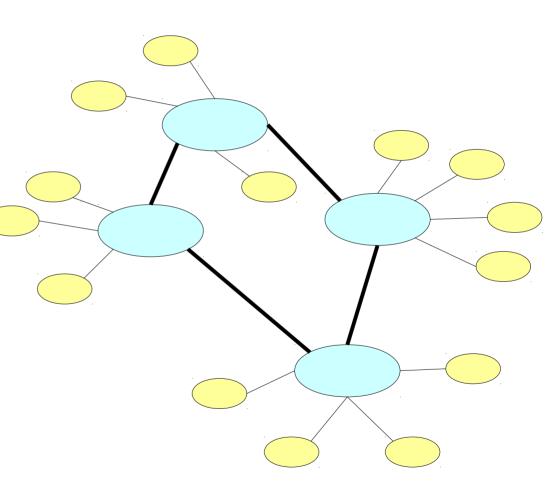
- Gnutella super-peers
 - Reflector nodes with query/response caches
 - High bandwidth connection

FreeNet: decentralized, routing


- Different focus
 - File storage instead of data search
 - R/W access to data

- Adaptive routing to overcome gnutella limitations
 - Routing tables: keys associated to files, (key, peer) pairs table
 - Most visited files replication
 - Least visited files expiration
 - Best effort quality of service: no guaranteed result
- Routing algorithm
 - Keys clusters (similar keys are close in the overlay network)
 - TTL + mix-net strategy (restart failed queries far away)
 - Routing table updates on query hit results

Data keys, unique identifiers


- SHA-1 hash function
 - Non-reversible, Sensitive to input changes, Collision resistant
- 3 keys: data integrity, authentication and privacy
 - CHK ensures integrity
 - SSK signature: pseudonymous identity of the inserter
 - KSK signature: document-specific identifier
 - Symmetric encryption ensures data protection

Master Ubinet: Large-Scale Distributed Computing (7)

Towards centralized/decentralized

- Nodes identification
 - Keys are associated to nodes as well
- Scalability
 - Up to 100 000s nodes
- Convergence observed towards a centralized/decentralized model

41

DHT, Overlay networks

- DHT: Distributed Hash Tables
 - Extension of hash tables to distributed systems
 - Scalable, fault tolerant
 - Combine decentralization (Gnutella), efficiency (Freenet) and guaranteed result (Napster)
- Applications
 - Distributed file systems, P2P file sharing
 - Web caching
 - Multicast / anycast
 - DNS (Domain Name Service)
 - Instant messaging

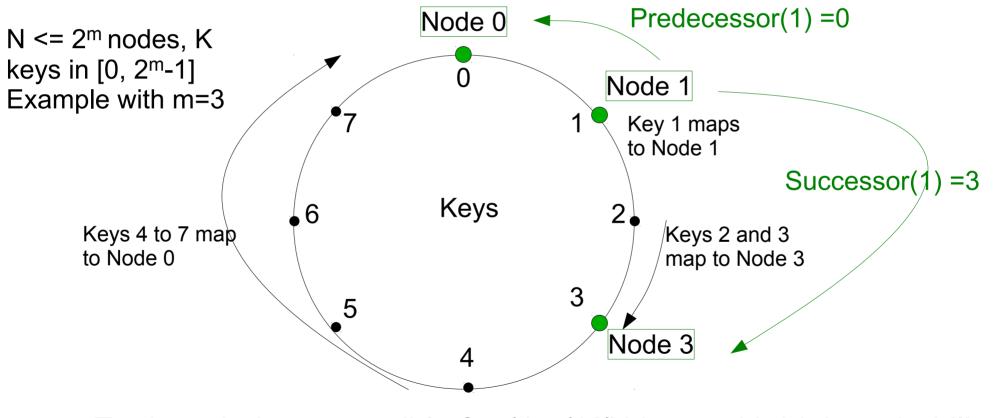
DHT, Overlay networks

Overlay network

- Structured, logical network
- Key space partitioning scheme among participating nodes
- Routing between nodes overlayed on top of the Internet network
- Example
 - (key, value) = (SHA1(data), data)
- Expected properties
 - Decentralization, scalability, fault tolerance
 - Security, anonymous in some cases
 - Load balancing
 - Data integrity
 - Performance

Key space partitioning

- ► Distance function in key space $\delta(k_1, k_2)$
 - Each node is assigned an ID key n
 - A node contains files which key k are closest to n ($\delta(k, n)$ min)
- Consistent hashing functions
 - Removing/adding a node only change the set of keys of nodes with adjacent IDs
 - Minimize data reorganization due to nodes leave / arrival

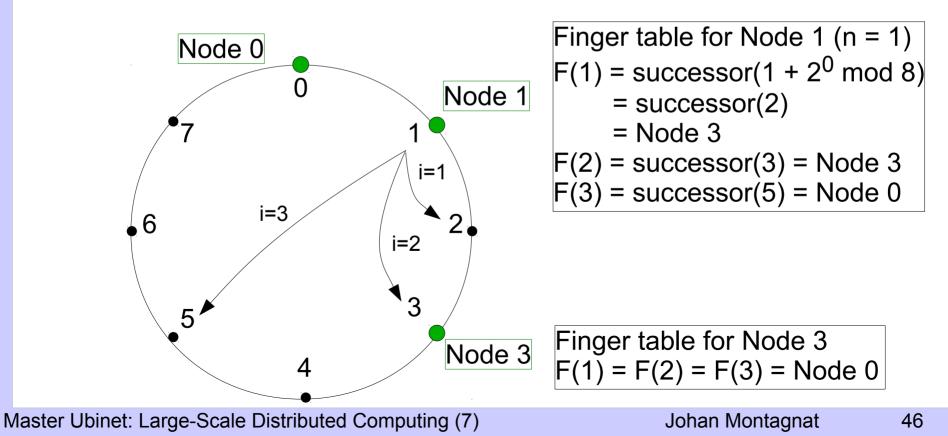

Key-based routing

- For any key k, a node either owns k or has a link to a node closer to k in its routing table
- Greedy algorithm for data discovery
- Antagonist goals: minimize both route lengths and neighborhood sizes. Typically O(log(n))/O(log(n))

DHT: Chord

Chord

- Keys are points on a circle
- δ is the number of hops on the circle traveling clockwise



 Each node is responsible for (1+ε)K/N keys with high probability with ε = O(log(N))

Master Ubinet: Large-Scale Distributed Computing (7)

Chord routes

- Routing following the predecessor/successor pointers: O(N)
 - Any node becomes a critical point of failure
- m-entries finger table for each node n
 - ith entry: node s = successor((n + 2ⁱ⁻¹) mod 2^m)

Chord routes

- Routing table properties
 - m = log(N) entries
 - No immediate routing (e.g. Node 3 finger table does not contain the successor of key 1)

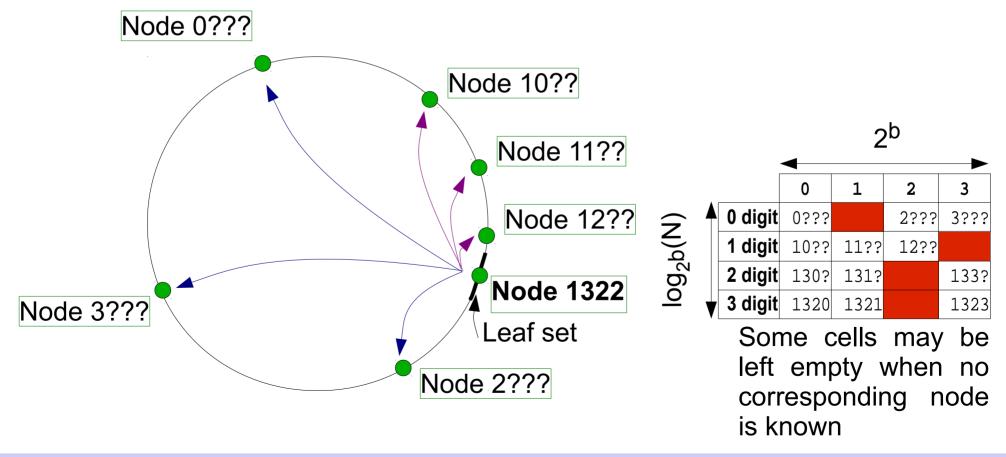
Routing for key k

- If it is known, send request to the immediate successor of k
- Otherwise, send the request closer to k, to the closest known predecessor of k
- With high probability, the route length is O(log(N))
- Insertion / deletion of nodes
 - Require a predecessor pointer to each node for reverse tracks
 - Create new node routing table and update other routing tables
 - With high probability, this require O(log²(N)) messages

DHT: Pastry

- Minimize message travel distance
 - Proximity metric (e.g. number of IP hops)
- Circular hash table's key space
 - m=128, random node IDs assignment
 - Node IDs are thought as numbers in base 2^b (typically, b=4)
 - Robust to L/2 adjacent simultaneous node failures (L=2^b or 2^{b+1})

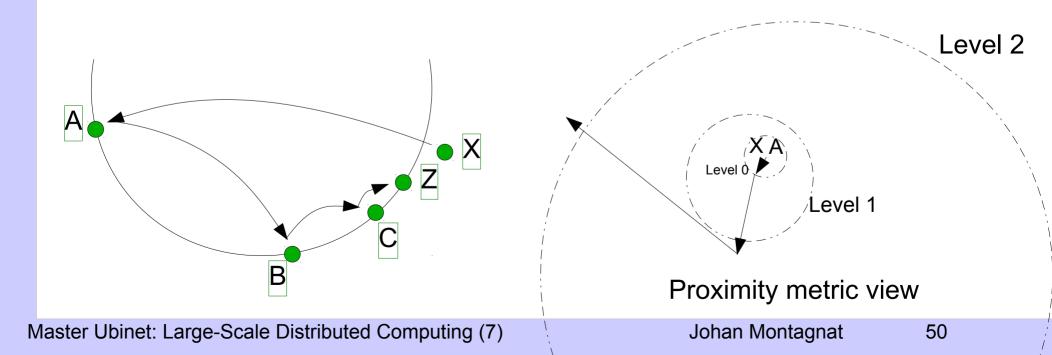
For any node:


Routing table: by ID prefix (base 2^b)

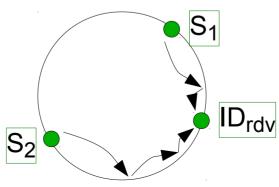
- Size $\log_{2^b}(N) \ge (2^b - 1)$, maximum $\log_{2^b}(N)$ hops

- Neighborhood set: M (=2^b or 2^{b+1}) closest peers in term of proximity metric
- Leaf set: L numerically closest peers (divided in 2 groups with smaller and larger IDs)

Pastry routing


- Example with b=2 (base 4), m=8 (4 digits node lds)
- Route to one node in the leaf set if within range or use the routing table: O(log_{2^b}(N))

Locality property

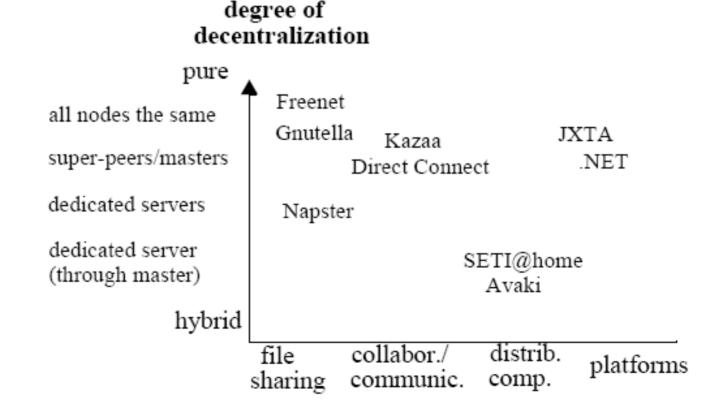

Adding nodes

- X joins, know A close geographically, search for Z closest ID
- Z leaf set is close to X leaf set
- X build routes from reasonably close A, B, C... Z nodes
- All table entries of any node refer to a node that is near (proximity metric) among nodes with appropriate prefix

Pastry applications

- PAST distributed file system
 - Locality property highly desirable to minimize file transfers
- SCRIBE publish/subscribe system
 - A set of subscribers $\{S_i\}$ are interested in a topic with ID_t
 - A rendez-vous node with ID_{rdv} close to ID_t is selected
 - Subscribers send a registration message ID_t with which is registered all along the path to ID_{rdv}
 - The publisher send messages to ID_{rdv}
 - Messages are multicasted to the reverse tree of all subscribers paths

Other DHTs


- Tapestry
 - Optimize routing tables (dynamically maintained, efficiency by minimizing messages latency)
 - Implements multicasting
 - Applications: OceanStore distributed storage, Spamwatch decentralized spam filter, Bayeux multicasting application...

CAN

- d-dimensional Cartesian coordinate key space
- O(d) route tables, O(dN^{1/d}) lookup cost
- Independent of N: matches Chord/Pastry for d = log(N) but N is meant to evolve while d is constant
- And many others...

The success of P2P networks

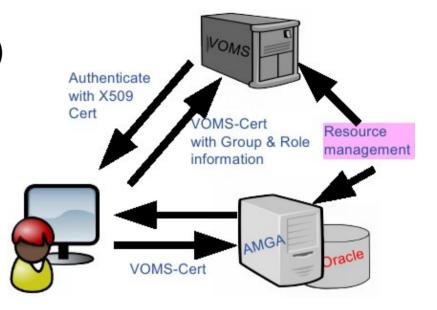
- Mostly based on read-only multimedia content retrieval
- Extension to load management based on a degree of centralization

Master Ubinet: Large-Scale Distributed Computing (7)

P2P challenges

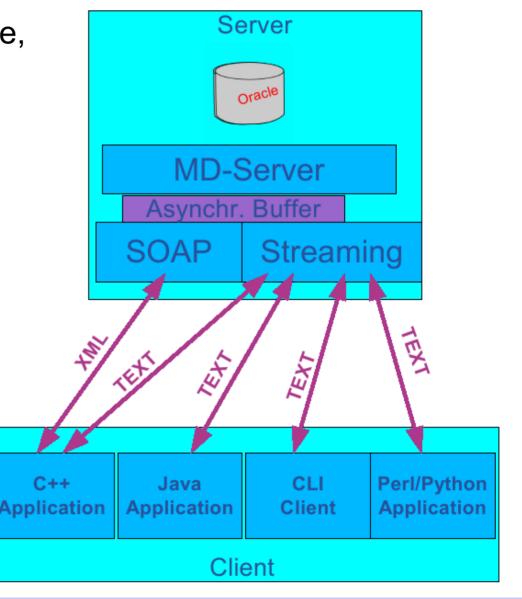
- Data access control
 - Most P2P networks ignore access control
- Availability of data
 - Table updates on node deletion but data inaccessible if the service interruption was not scheduled
 - Some effort for providing replication
- Data updates
 - Most data read-only

Metadata management

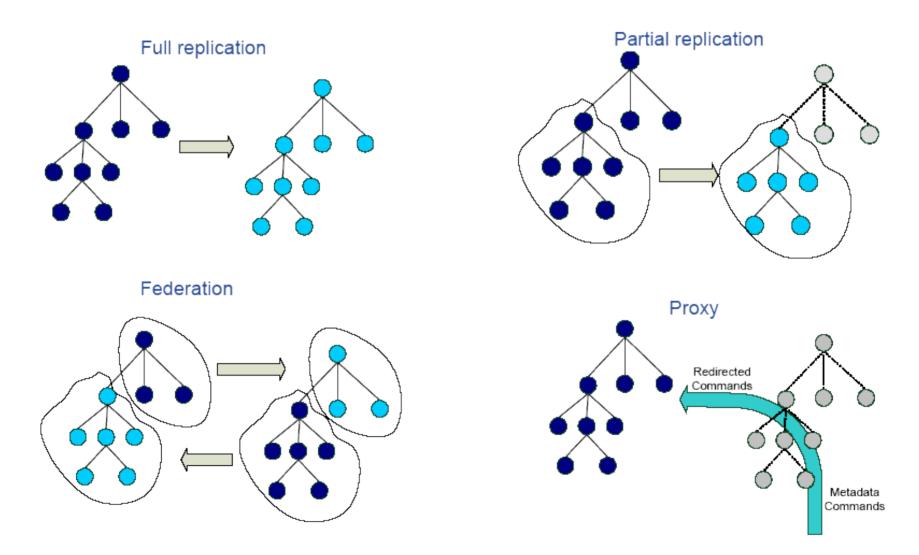

Master Ubinet: Large-Scale Distributed Computing (7)

Metadata

- Metadata
 - Any (secondary) data related to the (main) data
 - Usually stored in databases (relational, XML) by opposition to files
 - Especially important to handle heterogeneity
- Simple metadata indexed on files
 - System metadata: file size, checksum, etc
 - User metadata: file format, file descritption, etc
- General metadata, complex relational schema
 - Not necessarly directly indexed on data file
 - E.g. patient information attached to many medical data files
 - Require flexible and extensible metadata schema coupled with metadata search engine

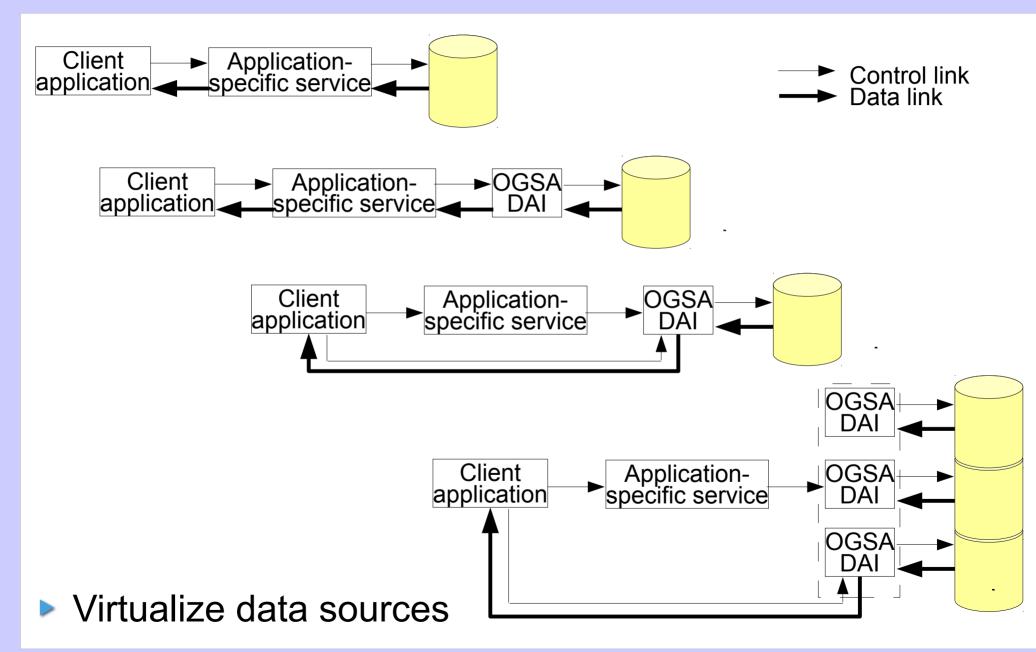

AMGA database front-end

- Grid credential-based authentication
 - Single sign-on
- Secured communications (TLS)
- ACL-based access control
 - Per table, per entry
- Different back-end
 - Heterogeneity, legacy DBs
- Performance
 - Streamed bulk operation
 - Scales to hundred concurrent client (back-end limit)
- Support for replication
- Proprietary interface / query language


AMGA infrastructure

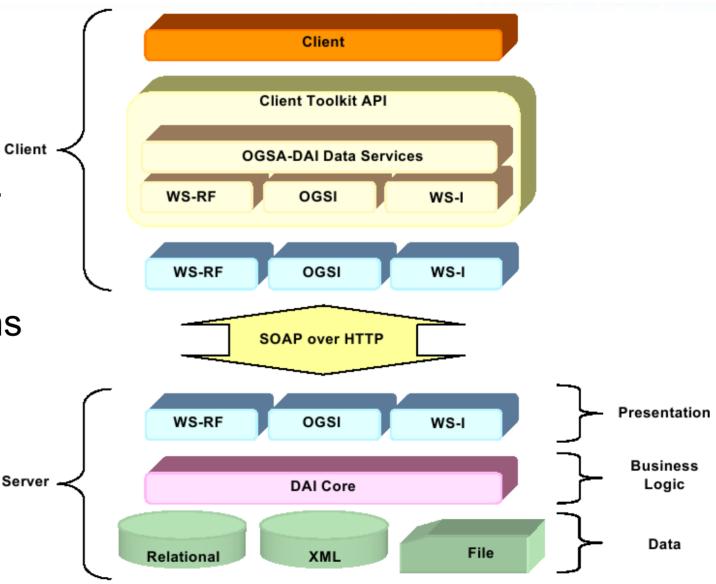
- Back-end
 - PostgreSQL, MySQL, Oracle, SQLite
- SOAP and text interfaces
- Streaming capability
 - Especially for WAN communications
- Secured communications
 - Optionally
- Client APIs
 - C++, Java, Perl, Python

AMGA replication

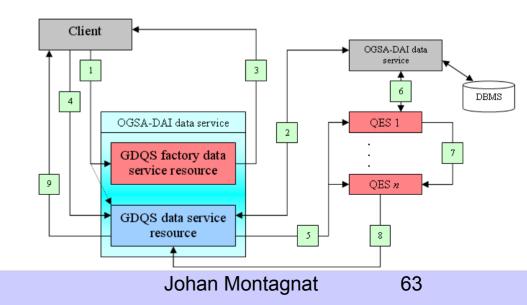

Replication of databases, hierarchical approach

OGDA DAI: Data Access Integration

- OGSA DAI
 - UK eScience project, http://www.ogsadai.org.uk
 - Part of the OGF DAIS-WS working group
- Middleware to assist with access and integration of data from different sources
 - Relational or XML databases
 - Files
 - Data query, transformation and delivery components
 - Service-based distributed query processor


OGSA DAI integration

Master Ubinet: Large-Scale Distributed Computing (7)


OGSA DAI architecture

- Service-based client ~
- Client / Serverside services
- Standard communications

OGSA DQP: Distributed Queries Processing

- Query service, interfaced to OGSA DAI services and other Web Services
- Parallel database technologies
 - Exploit queries implicit parallelism, distributed data sources
- Query Evaluator Service
 - Evaluates query partition
- Distributed Query Service
 - Coordinates QES partitions

References

- I. J. Taylor, "From P2P to Web Services and Grids: peers in a client/server world". Springer.
- I. Stoica, R. Morris, D. Karger, M. Frans Kashoek and H. Balakrishnan, "Chord: a scalable P2P lookup service for internet applications", ACM SIGCOMM 2001, San Diego, USA, Aug. 2001.
- A. Rowstron and P. Druschel, "Pastry: Scalable, decentralized object location and routing for large-scale peer-to-peer systems", IFIP/ACM Intl Conf. on Distributed Systems Platforms (Middleware), Heidelberg, Germany, Nov. 2003.